

MECHANICAL DATA

Dimensions in mm (inches)

LCC3 PACKAGE (MO-041BA) **Underside View**

PAD 1 - Drain PAD 3 - Source **PAD 2 - N/C** PAD 4 - Gate

P-CHANNEL ENHANCEMENT MODE MOSFET

FEATURES

- B_{VDSS} =-60V
- $I_D = -2.5A$
- $R_{DS(ON)} = 0.3\Omega$
- Hermetic Surface Mount Package
- Screening Option Available

The SML2955CSM4 is a very low on state resistance P-Channel enhancement mode mosfet in a Ceramic Surface Mount package designed for high rel applications:

ABSOLUTE MAXIMUM RATINGS (T_A = 25°C unless otherwise stated)

	- , ,				
$\overline{V_{DS}}$	Drain – Source Voltage		-60V		
V_{GS}	Gate – Source Voltage		±20V		
I_{D}	Continuous Drain Current	$@T_A = 25^{\circ}C$	-2.5A		
I_{DM}	Pulsed Drain Current ¹		-15A		
P_{D}	Power Dissipation	$@T_A = 25^{\circ}C$	0.8W		
		$@T_A = 100^{\circ}C$	0.32W		
$R_{\theta JA}$	Thermal Resistance Junction to Ambient		156°C/W		
T_{STG} , T_{J}	Maximum Junction and Storage Temperature Range		-55 to +150°C		

NOTE:

1) Repetitive Rating: Pulse Width limited by maximum junction temperature.

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

E-mail: sales@semelab.co.uk

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612.

Website: http://www.semelab.co.uk

SML2955CSM4

ELECTRICAL RATINGS (T_A = 25°C unless otherwise stated)

	Characteristic	Test Co	Test Conditions		Тур.	Max.	Unit
	STATIC CHARACTERISTICS						
V _{(BR)DSS}	Drain – Source Breakdown Voltage	$V_{GS} = 0V$	$I_D = -250 \mu A$	-60			V
V _{GS(TH)}	Gate Threshold Voltage ¹	$V_{DS} = V_{GS}$	I _D = -250μA	-2.0	-2.6	-4.0	
I _{GSS}	Gate – Source Leakage Current	$V_{GS} = \pm 20V$	$V_{GS} = 0V$			±100	nA
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -60V$	$V_{GS} = 0V$			-10	μΑ
I _{D(ON)}	On State Drain Current ¹	$V_{DS} = -5.0V$	V _{GS} = -10V	-12			Α
R _{DS(ON)}	Drain Source On-State Resistance ¹	I _D = -2.0A	$V_{GS} = -4.5V$			0.55	Ω
		$I_D = -2.5A$	V _{GS} = -10V			0.35	
			$T_{J} = 125^{\circ}C$			0.55	
9 _{fs}	Forward Transconductance ¹	V _{GS} = -10V	I _D = -2.5A		5.5		S
V SD	Diode Forward Voltage ¹	V _{GS} = 0V	I _D = -2.5A		-0.8	-1.2	V
	DYNAMIC CHARACTERISTICS	•		•			
C _{iss}	Input capacitance	201/	f = 1.0MHz		601		pF
C _{oss}	Output capacitance	$V_{DS} = -30V$			85		
C _{rss}	Reverse transfer capacitance	$V_{GS} = 0V$			35		
	SWITCHING CHARACTERISTICS						
Qg	Total Gate Charge	201/	I _D = -2.5A		11	15	nC
Q _{gs}	Gate-Source Charge	$V_{DS} = -30V$			2.4		
Q _{gd}	Gate-Drain Charge	$V_{GS} = -10V$			2.7		
t _{d(on)}	Turn-on Delay Time	1 - 1 0 4	$V_{DD} = -30V$ $R_{GEN} = 6\Omega$		12	21	ns
t _r	Rise Time	— I _D =-1.0A			10	20	
t _{d(off)}	Turn-off Delay Time	V _{GS} = -10V			19	34	
t _f	Fall Time				6	12	

NOTES:

1) Pulse Test: Pulse Width = $300\mu s$, Duty Cycle $\leq 2\%$

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612. Document Number 5878

E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk Issue 1